原文服务方: 计算机应用研究       
摘要:
在PSO聚类算法的基础上,提出了基于量子行为的微粒群优化算法(QPSO)的数据聚类.QPSO算法不仅参数个数少、随机性强,并且能覆盖所有解空间,保证算法的全局收敛.PSO与QPSO算法的不同在于聚类中心的进化上,实验中用到四个数据集比较的结果,证明了QPSO优于PSO聚类方法.在聚类过程中使用了一种新的度量代替Euclidean标准,实验证明了新的度量方法比Euclidean标准更具有健壮性,聚类的结果更精确.
推荐文章
一种量子行为粒子群优化动态聚类算法
粒子群优化
量子行为
完全学习策略
动态聚类
一种基于聚类的小生境微粒群算法
聚类
多种群策略
小生境
微粒群算法
基于蚁群优化算法的凝聚型层次聚类
凝聚型层次聚类
蚁群优化
状态转移规则
信息素更新规则
最优路径
基于改进微粒群算法的K-MEANS聚类和孤立点查找
微粒群算法
K均值算法
聚类
孤立点查找
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于量子行为的微粒群优化算法的数据聚类
来源期刊 计算机应用研究 学科
关键词 聚类 基于量子行为的微粒群优化算法 新的度量
年,卷(期) 2007,(11) 所属期刊栏目 研究探讨
研究方向 页码范围 49-51
页数 3页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2007.11.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 须文波 江南大学信息工程学院 409 3078 23.0 34.0
2 龙海侠 江南大学信息工程学院 9 88 5.0 9.0
3 唐槐璐 江南大学信息工程学院 2 11 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (7)
同被引文献  (1)
二级引证文献  (12)
1978(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(2)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(2)
  • 引证文献(2)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(1)
  • 二级引证文献(1)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(5)
  • 引证文献(0)
  • 二级引证文献(5)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
聚类
基于量子行为的微粒群优化算法
新的度量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导