原文服务方: 计算机测量与控制       
摘要:
为了对飞行作动器的故障进行有效辨识,使飞行员能够在更短时间内对故障进行处理,提出了基于自组织映射神经网络的学习向量量化算法;使用此方法在大步长采样下对飞行作动器的卡死和损伤故障进行训练和辨识,并尝试运用小波包技术分解小步长采样数据,结合自组织映射网络对分解后的数据进行分析;检验结果表明,大步长采样下,检测和分类效果令人满意,且具有良好的网络的泛化能力,而在小步长采样下,自组织映射网络不能有效区分故障类型,识别失败.
推荐文章
基于改进的LVQ神经网络的发动机故障诊断
改进的LVQ神经网络
发动机
故障诊断
神经元
基于LVQ神经网络风电机组齿轮箱故障诊断研究
LVQ神经网络
BP神经网络
风电机组
齿轮箱
故障诊断
基于PSO⁃KPCA⁃LVQ的燃气调压器故障诊断
燃气调压器
故障诊断
数据处理
核参数优化
数据分类
算法比较
基于神经网络的无线传感器网络故障诊断方法
神经网络
无线传感器网络
故障诊断
粗糙集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LVQ神经网络的飞行作动器故障诊断
来源期刊 计算机测量与控制 学科
关键词 飞行作动器 故障诊断 自组织映射网络 LVQ算法 小波包分解
年,卷(期) 2008,(7) 所属期刊栏目 自动化测试
研究方向 页码范围 932-934,938
页数 4页 分类号 TP277
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 安锦文 西北工业大学自动化学院 83 600 13.0 18.0
2 张丹 西北工业大学自动化学院 10 83 6.0 8.0
3 孙健 西北工业大学自动化学院 6 36 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (5)
同被引文献  (12)
二级引证文献  (14)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(8)
  • 引证文献(1)
  • 二级引证文献(7)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
飞行作动器
故障诊断
自组织映射网络
LVQ算法
小波包分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导