原文服务方: 西安工程大学学报       
摘要:
为了增强传统自适应遗传算法在进化初期的鲁棒性及避免早熟收敛,给出了一种改进算法,并利用这一算法来调整BP模型的网络权值与阈值,最后将新算法应用于字符的识别.仿真结果表明,新算法比BP算法具有更强的识别能力.
推荐文章
基于神经网络算法的字符识别方法研究
BP神经网络
车牌
字符识别
形状
径向基神经网络算法在车牌字符识别中的应用
汽车车牌
字符分割
字符识别
径向基网络
基于神经网络的分阶车牌字符识别算法研究
车牌字符识别
BP神经网络
卷积神经网络
分阶
基于遗传算法的神经网络自适应控制器的研究
遗传算法
神经网络
自适应控制器
PID
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自适应遗传算法的神经网络字符识别
来源期刊 西安工程大学学报 学科
关键词 遗传算法 BP算法 字符识别
年,卷(期) 2008,(2) 所属期刊栏目 电子信息技术
研究方向 页码范围 210-213
页数 4页 分类号 TP183
字数 语种 中文
DOI 10.3969/j.issn.1674-649X.2008.02.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王晓东 西安工程大学理学院 40 180 7.0 11.0
2 薛宏智 长安大学理学院 16 74 5.0 8.0
3 马盈仓 西安工程大学理学院 37 80 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (151)
参考文献  (10)
节点文献
引证文献  (5)
同被引文献  (17)
二级引证文献  (19)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(8)
  • 参考文献(0)
  • 二级参考文献(8)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(7)
  • 参考文献(1)
  • 二级参考文献(6)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(4)
  • 参考文献(3)
  • 二级参考文献(1)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(6)
  • 引证文献(1)
  • 二级引证文献(5)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
遗传算法
BP算法
字符识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安工程大学学报
双月刊
1674-649X
61-1471/N
大16开
1986-01-01
chi
出版文献量(篇)
3377
总下载数(次)
0
总被引数(次)
15983
论文1v1指导