基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为加快支持向量域描述(SVDD)的训练速度,提出基于约减集的约简支持向量域描述算法RSVDD.由于描述边界仅由支持向量决定,且支持向量多分布在描述边缘附近,该算法采用每个样本到中心的距离作为支持向量的一种可能性度量,选取距离较大的部分样本作为约减集参与SVDD训练.人造数据和基准集数据上的仿真实验表明了RSVDD的有效性和优越性,保证了目标类和奇异值类的分类精度,缩减了训练规模和训练时间.
推荐文章
基于支持向量域描述的学习分类器
支持向量域描述
学习分类器
支持向量机
序列最小优化
基于数据域描述的模糊支持向量回归
支持向量机
数据域描述
模糊隶属度
建模
基于约减支持向量机的相关反馈图像检索算法
约减支持向量机
相关反馈
图像检索
一种快速加权支持向量机训练算法
加权支持向量机
工作集
目标函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种约减支持向量域描述算法RSVDD
来源期刊 西安电子科技大学学报(自然科学版) 学科 工学
关键词 支持向量域描述 约减集 中心距离 支持向量
年,卷(期) 2008,(5) 所属期刊栏目
研究方向 页码范围 927-931
页数 5页 分类号 TP18
字数 3200字 语种 中文
DOI 10.3969/j.issn.1001-2400.2008.05.030
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘三阳 西安电子科技大学理学院 662 5562 32.0 51.0
2 吴德 西安电子科技大学计算机学院 12 82 6.0 9.0
3 梁锦锦 西安电子科技大学理学院 5 42 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (71)
参考文献  (6)
节点文献
引证文献  (10)
同被引文献  (14)
二级引证文献  (16)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(4)
  • 引证文献(0)
  • 二级引证文献(4)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(6)
  • 引证文献(1)
  • 二级引证文献(5)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
支持向量域描述
约减集
中心距离
支持向量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安电子科技大学学报(自然科学版)
双月刊
1001-2400
61-1076/TN
西安市太白南路2号349信箱
chi
出版文献量(篇)
4652
总下载数(次)
5
总被引数(次)
38780
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导