原文服务方: 太原理工大学学报       
摘要:
解的稀疏性的丧失——所有的训练样本均作为支持向量,是最小二乘支持向量机的缺点之一,针对导致模型复杂度提高和模型训练、识别速度降低的问题,从数据挖掘和支持向量的几何分布含义两个方面出发,提出了一种新的支持向量预选取算法.一方面对原数据集的每类数据分别进行K均值聚类,将所有的类中心作为原始数据的表征集;另一方面对原数据集用K最近邻方法提取原数据集的边界样本;最后将这两种方法提取的所有样本点的并集作为预选支持向量进行训练和预测.UCI数据库的实验表明:该方法充分融合了K均值和K最近邻预选取算法的优点,能有效的预选取出支持向量,同时保持较高的识别率,而且稀疏效果更稳定,稀疏性能优于经典的迭代剪枝算法.
推荐文章
基于随机中心距离排序的支持向量预选取方法
支持向量预选取
随机中心
距离排序
边界样本集
一种改进的模糊多类支持向量机算法
支持向量机
统计学习理论
多类分类
模糊隶属函数
一种改进的SVM支持向量分类方法
支持向量机
类向心度
样本集
KNN
一种基于PSO的混合核支持向量机算法
支持向量机
全局核函数
局部核函数
混合核函数
粒子群优化算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的LSSVM支持向量预选取算法
来源期刊 太原理工大学学报 学科
关键词 最小二乘支持向量机 K均值聚类 K最近邻 预选取算法 稀疏化
年,卷(期) 2014,(5) 所属期刊栏目 信息与电气工程
研究方向 页码范围 609-613
页数 5页 分类号 TP181
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张雪英 太原理工大学信息工程学院 233 1213 15.0 23.0
2 刘晓峰 太原理工大学数学学院 40 120 7.0 7.0
3 王真真 太原理工大学信息工程学院 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (75)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(4)
  • 参考文献(3)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
最小二乘支持向量机
K均值聚类
K最近邻
预选取算法
稀疏化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太原理工大学学报
双月刊
1007-9432
14-1220/N
大16开
太原市迎泽西大街79号3337信箱
1957-01-01
汉语
出版文献量(篇)
4103
总下载数(次)
0
总被引数(次)
28999
论文1v1指导