基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以美国PJM电力市场为背景,利用历史负荷、系统剩余容量百分比和清算电价对未来时段电价的影响来进行短期电价预测,给出了一个发电侧竞价模型中利用PSO训练BP神经网络进行市场出清电价预测的实例.与使用传统BP神经网络预测的方法进行比较,结果表明,该方法具有更高的预测精度,并能收敛于全局最优解.
推荐文章
基于PSO?BP神经网络的短期负荷预测算法
短期负荷预测
BP神经网络
粒子群算法
零相滤波器
基于混沌与改进BP神经网络的电价预测方法
电力市场
神经网络
混沌
电价
基于改进PSO-BP神经网络的回弹预测研究
V形自由折弯
回弹
BP神经网络
改进粒子群算法
全局搜索能力
收敛精度
泛化能力
基于PSO?BP神经网络的短期负荷预测算法
短期负荷预测
BP神经网络
粒子群算法
零相滤波器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO训练BP神经网络的短期电价预测
来源期刊 电力科学与工程 学科 工学
关键词 BP神经网络 粒子群优化算法(PSO) 电力市场 市场出清价
年,卷(期) 2008,(10) 所属期刊栏目
研究方向 页码范围 21-23
页数 3页 分类号 F407.61|TP183
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
粒子群优化算法(PSO)
电力市场
市场出清价
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力科学与工程
月刊
1672-0792
13-1328/TK
大16开
河北省保定市永华北大街619号华北电力大学
18-182
1985
chi
出版文献量(篇)
3177
总下载数(次)
3
论文1v1指导