基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
贝叶斯网用一种紧凑的形式表示联合概率分布,具有完备的语义和坚实的理论基础,目前已成为人工智能领域处理不确定性问题的最佳方法之一.贝叶斯网学习是其关键问题,传统学习方法存在如下不足:(1)随节点数增多非法结构以指数级增加,影响学习效率;(2)在等价结构之间进行打分搜索,影响收敛速度;(3)假设每个结构具有相同的先验概率,造成等价类中包含结构越多则先验概率越高.本文提出一种学习马尔科夫等价类算法,该算法基于骨架空间进行状态转换,利用从骨架空间到等价类空间的映射关系实现学习贝叶斯网等价类.实验数据证明,该方法可有效缩小搜索空间规模,相对于在有向图空间搜索的算法加快了算法的收敛速度,提高了执行效率.
推荐文章
基于互信息学习贝叶斯网络等价类
数据挖掘
贝叶斯网络
结构学习
连通图
互信息
条件独立测试
免疫遗传算法学习贝叶斯网等价类
贝叶斯网
结构学习
马尔科夫等价
免疫遗传算法
条件独立测试
一类基于蚁群优化的贝叶斯置信网结构学习策略及性能分析
优化算法
蚁群优化算法
贝叶斯置信网
结构学习
采用约束蚁群优化的贝叶斯网结构学习算法
贝叶斯网络
约束蚁群优化算法
增边规则
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 贝叶斯网等价类学习算法
来源期刊 计算机工程与科学 学科 工学
关键词 贝叶斯网 结构学习 马尔科夫等价类 链图
年,卷(期) 2008,(12) 所属期刊栏目 算法研究
研究方向 页码范围 63-67,71
页数 6页 分类号 TP301.6
字数 5915字 语种 中文
DOI 10.3969/j.issn.1007-130X.2008.12.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘大有 吉林大学符号计算与知识工程教育部重点实验室 211 4714 34.0 63.0
2 陈娟 吉林大学计算机科学与技术学院 26 106 7.0 9.0
3 贾海洋 吉林大学计算机科学与技术学院 7 16 2.0 3.0
4 关淞元 吉林大学符号计算与知识工程教育部重点实验室 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (35)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(1)
  • 二级参考文献(4)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(3)
  • 参考文献(2)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
贝叶斯网
结构学习
马尔科夫等价类
链图
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导