基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
建立在统计学习理论(SLT)和结构风险最小化(SRM)准则基础上的支持向量机(SVM)在理论上能够很好地平衡学习精度和泛化能力之间的矛盾,支持向量机回归(SVR)是处理小样本数据回归建模的有利工具.文中提出应用SVR求解年电力需求预测问题,给出了求解问题的具体过程和方法,并对比研究了SVR和BP网络预测方法.预测结果表明应用SVR预测年电力需求,不仅易于实现,而且精度较高,性能明显优于BP网络方法.
推荐文章
基于支持向量回归机的区域物流需求预测模型及其应用
区域物流需求
支持向量回归机
预测
基于小波支持向量回归的电力系统负荷预测
电力负荷
小波支持向量回归
短期预测
混沌动力系统
基于支持向量机的石油需求预测
支持向量机
结构风险最小化
神经网络
石油需求
基于支持向量回归的设备故障趋势预测
支持向量回归
BP神经网络
灰色模型
灰色-AR模型
故障趋势预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量回归的年电力需求预测方法
来源期刊 自动化技术与应用 学科 工学
关键词 年电力需求 支持向量回归,回归 预测
年,卷(期) 2008,(6) 所属期刊栏目 控制理论与应用
研究方向 页码范围 6-8,5
页数 4页 分类号 TM77
字数 3157字 语种 中文
DOI 10.3969/j.issn.1003-7241.2008.06.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭彦东 4 20 3.0 4.0
2 李荣 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (97)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (6)
二级引证文献  (14)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(5)
  • 参考文献(2)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(4)
  • 引证文献(2)
  • 二级引证文献(2)
2013(3)
  • 引证文献(0)
  • 二级引证文献(3)
2014(3)
  • 引证文献(1)
  • 二级引证文献(2)
2016(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
年电力需求
支持向量回归,回归
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化技术与应用
月刊
1003-7241
23-1474/TP
大16开
哈尔滨市开发区汉水路165号
14-37
1982
chi
出版文献量(篇)
8131
总下载数(次)
24
总被引数(次)
36824
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导