基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
模糊神经网络和SARIMA模型分别对非线性和线性时间序列有很好的预测能力,但在实际应用中大多数序列并非稳定、单纯线性或非线性的.为了提高预测精度,提出了一种基于T-S模糊神经网络与SARIMA结合的时间序列预测模型.针对悉尼航班乘客收入数据给出了三种混合模型,并与模糊神经网络、支持向量机、SARIMA和BP神经网络四种单独模型进行比较.实验结果表明,从预测精度和参数选择方面来看,所给模型是有效的.
推荐文章
混沌序列的模糊神经网络预测
T-S模糊神经网络
混沌
BP 算法
基于神经网络的混沌时间序列预测
人工神经网络
混沌时间序列
Lyapunov指数
面向金融数据的神经网络时间序列预测模型
时间序列
Elman神经网络
特征选择
特征提取
Clamping神经网络
模糊控制与神经网络相结合的预测研究
模糊神经网络
混沌系统
Lyapunov指数
相关维数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 模糊神经网络与SARIMA结合的时间序列预测模型
来源期刊 计算机技术与发展 学科 工学
关键词 模糊神经网络 SARIMA 混合模型预测 时间序列
年,卷(期) 2008,(8) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 61-64
页数 4页 分类号 TP18
字数 2635字 语种 中文
DOI 10.3969/j.issn.1673-629X.2008.08.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙德山 辽宁师范大学数学学院 66 560 13.0 21.0
2 何星星 辽宁师范大学数学学院 1 11 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (11)
同被引文献  (25)
二级引证文献  (12)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(4)
  • 引证文献(3)
  • 二级引证文献(1)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(0)
  • 二级引证文献(2)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
模糊神经网络
SARIMA
混合模型预测
时间序列
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导