基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量回归机是一种解决回归问题的重要方法,其预测速度与支持向量的稀疏性成正比.为了改进支持向量回归机的稀疏性,提出了一种直接稀疏支持向量回归算法DSKR(Direct Sparse Kernel Support Vector Regression),用于构造稀疏性支持向量回归机.DSKR算法对e-SVR(e-Support Vector Regression)增加一个非凸约束,通过迭代优化的方式,得到稀疏性好的支持向量回归机.在人工数据集和真实世界数据集上研究DSKR算法的性能,实验结果表明,DSKR算法可以通过调控支持向量的数目,提高支持向量回归机的稀疏性,且具有较好的鲁棒性.
推荐文章
基于减量学习的鲁棒稀疏最小二乘支持向量回归机
最小二乘支持向量回归机
鲁棒性
稀疏性
鲁棒'3σ'准则
留一误差
减量学习
基于支持向量回归机和B样条网络回归曲线建模算法
支持向量机
支持向量回归
B样条网络
回归曲线模型
一种新的快速支持向量回归算法
二次规划
支持向量回归
连续过松弛
基于多项式光滑的支持向量回归机
支持向量机
光滑化方法
多项式光滑函数
拟牛顿法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 新的稀疏支持向量回归机算法及实验研究
来源期刊 计算机工程与应用 学科 工学
关键词 支持向量回归机 核方法 稀疏核学习
年,卷(期) 2008,(36) 所属期刊栏目 博士论坛
研究方向 页码范围 24-28
页数 5页 分类号 TP18
字数 5332字 语种 中文
DOI 10.3778/j.issn.1002-8331.2008.36.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王士同 江南大学信息学院 528 3424 23.0 37.0
2 曹苏群 江南大学信息学院 12 77 5.0 8.0
6 陈晓峰 江南大学信息学院 16 103 7.0 10.0
7 马培勇 中国科学技术大学工程科学学院 16 65 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (9)
参考文献  (4)
节点文献
引证文献  (13)
同被引文献  (8)
二级引证文献  (30)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(3)
  • 引证文献(3)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(7)
  • 引证文献(2)
  • 二级引证文献(5)
2018(11)
  • 引证文献(1)
  • 二级引证文献(10)
2019(12)
  • 引证文献(0)
  • 二级引证文献(12)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
支持向量回归机
核方法
稀疏核学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导