基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
采用主元分析法(PCA)与BP神经网络相结合的方法,为电站锅炉入炉煤质中的挥发分和低位热值建立了软测量模型.应用主元分析法对与入炉煤质相关的运行参数进行降维处理,再将处理过后的综合变量作为BP神经网络的输入变量,方便和简化了过程数据的处理,亦使得煤质预测的精度得到了有效提高.
推荐文章
基于PCA-BP神经网络的精馏塔产品组成软测量模型
精馏塔
BP神经网络
PCA方法
软测量
LM算法
基于PCA-BP神经网络的精馏塔产品组成软测量模型
精馏塔
BP神经网络
主元分析
软测量
基于PCA-BP神经网络算法桃树叶片SPAD值高光谱估算
高光谱
SPAD值
红边参数
主成分分析
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PCA-BP神经网络的锅炉煤质的软测量
来源期刊 能源技术 学科 工学
关键词 煤质 挥发分 低位热值 软测量 主元分析 BP神经网络
年,卷(期) 2009,(1) 所属期刊栏目 研究与探索
研究方向 页码范围 9-11
页数 3页 分类号 TK229.6
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈绍炳 16 197 6.0 14.0
2 谭浩艺 3 4 1.0 2.0
3 周自强 3 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (29)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(6)
  • 参考文献(1)
  • 二级参考文献(5)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
煤质
挥发分
低位热值
软测量
主元分析
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
能源技术
双月刊
chi
出版文献量(篇)
1124
总下载数(次)
4
论文1v1指导