原文服务方: 中国机械工程       
摘要:
针对空间大型可展开天线柔性大、展开过程中弹性变形与刚体运动相互耦合、机构运动参数时变的特点,提出了基于改进变异蚁群算法神经网络的辨识模型用于可展开天线动态响应辨识的方法.该方法采用改进变异蚁群算法优化神经网络权值,将变异机制引入蚁群算法,解决了蚁群算法收敛慢的缺点,对变异蚁群算法进行改进,提高了算法跳出局部最优的能力,进一步加快了收敛速度.仿真结果表明,该辨识模型兼具神经网络和蚁群算法的优点,不仅具有优异的非线性逼近能力,还具有高的运算效率.该辨识模型能够准确地辨识天线的动态响应,辨识的收敛速度快且精度高.
推荐文章
基于蚁群算法神经网络的煤自燃难易着火活化能预测
蚁群算法
神经网络
自然发火
着火活化能
基于混沌蚁群算法的BP神经网络训练研究
群智能
混沌蚁群算法
BP神经网络
基于蚁群算法的神经网络规则抽取
神经网络
规则抽取
蚁群算法
聚类
变异蚁群神经网络及其对DTC转速的辨识
神经网络
蚁群算法
直接转矩控制
变异机制
转速辨识
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进变异蚁群算法神经网络的空间大型可展开天线动态响应辨识
来源期刊 中国机械工程 学科
关键词 神经网络 系统辨识 柔性结构 天线 动态响应 变异蚁群算法
年,卷(期) 2009,(1) 所属期刊栏目 科学基金
研究方向 页码范围 86-89
页数 4页 分类号 TP13
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘明治 43 490 11.0 21.0
2 王娟 19 227 9.0 15.0
3 杨要恩 8 38 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (364)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(4)
  • 参考文献(1)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(2)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(2)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络
系统辨识
柔性结构
天线
动态响应
变异蚁群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国机械工程
月刊
1004-132X
42-1294/TH
大16开
湖北省武汉市洪山区南李路湖北工业大学
1990-01-01
中文
出版文献量(篇)
13171
总下载数(次)
0
总被引数(次)
206238
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导