基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高支持向量机性能,提出一种支持向量机核函数的迭代改进新算法.利用与数据有关的保角映射,使核函数包含了全部学习样本的信息,即核函数具有数据依赖性.基本核函数的参数可取随机初值,通过对核函数进行多次迭代改进,直至得到满意的学习效果.与传统方法相比,新算法不需要筛选核函数的参数.对一元连续函数和强地震事件的仿真计算结果表明,改进SVR(support vector regression)的学习效果优于传统方法,并且随着迭代次数的增加,学习风险下降收敛,收敛速度依赖于传统方法的基本参数和改进方法的参数.
推荐文章
一种基于核函数特征提取改进方法的应用
核典型相关分析
特征提取
计算复杂度
内存占用量
识别率
一种基于核函数的杂系盲源分离算法
盲源分离
核函数
平滑参数
收敛速度
相关系数
一种迭代改进的球向量机故障诊断算法
往复式压缩机
故障诊断
大规模故障数据
球向量机
基于一种混合核函数的支持向量机聚类
SVM
混合核函数
加权多宽度高斯核
支持向量聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于训练数据的迭代改进核函数
来源期刊 应用数学和力学 学科 数学
关键词 支持向量回归 数据依赖 核函数 迭代
年,卷(期) 2009,(1) 所属期刊栏目
研究方向 页码范围 120-126
页数 7页 分类号 O241.82
字数 3693字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周志祥 重庆交通大学土木建筑学院 170 1200 17.0 27.0
2 韩逢庆 重庆交通大学理学院 4 13 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (18)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (6)
二级引证文献  (6)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(2)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量回归
数据依赖
核函数
迭代
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学和力学
月刊
1000-0887
50-1060/O3
16开
重庆交通大学90号信箱
78-21
1980
chi
出版文献量(篇)
3740
总下载数(次)
2
总被引数(次)
22232
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
重庆市自然科学基金
英文译名:
官方网址:http://law.ddvip.com/law/2006-09/11584979384040.html
项目类型:重点项目
学科类型:
论文1v1指导