传统的数据处理群方法(Group method of data handling,GMDH)在结构上具有自组织和全局选优的特性,非常适合进行非线性数据的拟合.但由于在传统GMDH网络建模是用最小二乘法来辨识参数,常常使得模型预测效果不理想.遗传算法是一种有效的搜索和优化方法.它具有自适应搜索、渐进式寻优、并行式搜索、通用性强等特点,论文将遗传算法引入GMDH网络,用遗传算法辨识部分描述式的系数,建立了基于遗传算法的GMDH网络模型.并将该模型应用于一组实测时间序列的预测研究.计算机仿真结果表明,模型预测效果令人满意.