作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对入侵检测样本数据案过于庞大,学习速度过慢的问题,提出了一种将聚类和距离比较算法相结合的SVM样本数据预选取算法(US-PLN),该算法通过舍弃一些相似的点,而只保留其代表点,以达到削减样本数量,提高训练及检测速度的目的.在此基础上提出一种相应的约简加权单类SVM算法(RWOCSVM),该算法通过从预选取算法中所得的样本权值解决了标准加权SVM算法中相应权值无法直接确定的问题,并且通过给予代表点以相应的权值补偿从而将因舍弃部分样本数据而带来的检测性能的减弱程度降到最低.实验采用KDD99测试数据,结果表明,该方法在保持了较高检测精度的情况下,极大地提高了训练和检测效率.
推荐文章
基于量子遗传聚类的入侵检测方法
入侵检测
聚类
量子遗传算法
组合优化
基于聚类学习算法的网络入侵检测研究
入侵检测
网络安全
数据挖掘
聚类
无类标数据
基于SVM技术的入侵检测
信息安全
入侵检测
异常检测
滥用检测
1类SVM(支持向量机)
基于克隆选择聚类的入侵检测
克隆选择算法
聚类分析
入侵检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚类和距离比较的约简加权SVM入侵检测方法
来源期刊 数据采集与处理 学科 地球科学
关键词 聚类 距离比较算法 约简加权 支持向量机 入侵检测
年,卷(期) 2009,(2) 所属期刊栏目 研究简报
研究方向 页码范围 232-237
页数 6页 分类号 P181
字数 5666字 语种 中文
DOI 10.3969/j.issn.1004-9037.2009.02.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈兵 南京航空航天大学信息科学与技术学院 76 670 14.0 23.0
2 周轼 南京航空航天大学信息科学与技术学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (1959)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(4)
  • 参考文献(3)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类
距离比较算法
约简加权
支持向量机
入侵检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
总被引数(次)
25271
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导