基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种融入遗传算子(Genetic Operator)的蚁群算法(ACAGO)求解旅行商问题(TSP).蚁群算法(Ant Colony Algorithm )是一种受自然界蚂蚁群体觅食行为启发而提出的进化计算算法,并且已经在求解TSP问题上成功地应用.然而,基本的蚁群算法存在收拟速度慢,容易陷入局部最优等不足.ACAGO算法通过使用遗传算法的交叉算子和变异算子扩大解的局部搜索空间,而选择算子则可以使好的解集的信息素的浓度得到增强,加快了算法的收敛速度.文章对ACAGO算法的执行过程进行了说明并且给出了具体的实现方案,同时通过TSP Lib上的测试样例将该融入遗传算子的蚁群算法和基本的蚁群算法进行了比较.比较结果表明了本文的新的ACAGO算法具有更大的优势,它不但能使算法求解到更好的解,而且加快了算法的收敛速度.
推荐文章
基于遗传-模拟退火的蚁群算法求解TSP问题
传统蚁群算法
遗传算法
模拟退火
旅行商问题
基于蚁群算法和免疫算法融合的TSP问题求解
蚁群算法
克隆选择
局部搜索
免疫基因
TSP问题
求解TSP的改进蚁群算法
蚁群算法(ACA)
旅行商问题
候选城市列表
聚类
蚁群系统(ACS)
求解TSP问题的改进最大最小蚁群算法
蚁群算法
旅行商问题
优质解
最大最小化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融入遗传算子的蚁群算法求解TSP问题
来源期刊 广西民族大学学报(自然科学版) 学科 工学
关键词 蚁群算法(ACA) 遗传算法(GAs) 旅行商问题(TSP) 融入
年,卷(期) 2009,(3) 所属期刊栏目 计算机技术研究
研究方向 页码范围 81-87
页数 7页 分类号 TP18
字数 6295字 语种 中文
DOI 10.3969/j.issn.1673-8462.2009.03.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄力 54 313 9.0 15.0
2 张晓玲 大理学院数学与计算机科学学院 22 83 6.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (238)
参考文献  (6)
节点文献
引证文献  (10)
同被引文献  (32)
二级引证文献  (22)
1983(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(3)
  • 引证文献(0)
  • 二级引证文献(3)
2013(5)
  • 引证文献(0)
  • 二级引证文献(5)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(6)
  • 引证文献(2)
  • 二级引证文献(4)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(6)
  • 引证文献(1)
  • 二级引证文献(5)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
蚁群算法(ACA)
遗传算法(GAs)
旅行商问题(TSP)
融入
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西民族大学学报(自然科学版)
季刊
1673-8462
45-1350/N
大16开
南宁市大学东路188号
48-96
1994
chi
出版文献量(篇)
2860
总下载数(次)
13
总被引数(次)
7691
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导