原文服务方: 西安工程大学学报       
摘要:
针对标准蚁群算法在求解旅行商问题(TSP)时存在收敛速度慢,易陷入局部最优等缺陷,提出一种自适应蚁群优化算法。该算法设计了一种实时监测机制和一种新的搜索方向,实时监测机制可以让算法跳出局部最优值,并且当算法跳出局部最优值时,沿着新的搜索方向搜索,可以加快算法收敛到全局最优。通过对典型的 TSP实例仿真实验,与基本蚁群算法、MMAS算法相对比,结果显示该算法在克服早熟现象和收敛速度方面有很大的优越性。
推荐文章
基于自适应多态免疫蚁群算法的TSP求解
自适应
多态
蚁群算法
免疫克隆选择
旅行商问题
蜂群—蚁群自适应优化算法
优化问题
蚁群优化
人工蜂群算法
求解TSP的改进蚁群算法
蚁群算法(ACA)
旅行商问题
候选城市列表
聚类
蚁群系统(ACS)
基于局部优化策略求解TSP的蚁群算法
蚁群算法
局部优化
旅行商问题
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种求解TSP的自适应蚁群优化算法
来源期刊 西安工程大学学报 学科
关键词 蚁群算法 旅行商问题(TSP) 组合优化
年,卷(期) 2013,(6) 所属期刊栏目 基础科学
研究方向 页码范围 840-844
页数 5页 分类号 TP18
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李艳颖 西安电子科技大学理学院 3 13 2.0 3.0
2 王胜训 西安电子科技大学理学院 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (304)
参考文献  (7)
节点文献
引证文献  (7)
同被引文献  (43)
二级引证文献  (27)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(5)
  • 参考文献(1)
  • 二级参考文献(4)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(3)
  • 引证文献(1)
  • 二级引证文献(2)
2016(5)
  • 引证文献(1)
  • 二级引证文献(4)
2017(11)
  • 引证文献(4)
  • 二级引证文献(7)
2018(8)
  • 引证文献(0)
  • 二级引证文献(8)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
蚁群算法
旅行商问题(TSP)
组合优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安工程大学学报
双月刊
1674-649X
61-1471/N
大16开
1986-01-01
chi
出版文献量(篇)
3377
总下载数(次)
0
总被引数(次)
15983
论文1v1指导