基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
边坡变形具有复杂性、随机性、不确定性、地域性、时效性等的特性,对边坡进行精确的预报一直是一个难题.针对此问题,本文建立了基于小波分析的神经网络预报模型来对边坡变形进行研究,结果表明小波神经网络预测模型具有更灵活有效的函数逼近能力,预报的精度高,并通过实例验证了小波神经网络预测模型的高精度性.
推荐文章
基于粒子群算法优化小波神经网络的 BDS-3钟差预报研究
BDS-3钟差预报
卫星钟差
小波神经网络
粒子群算法
小波神经网络模型在滁河流域南京段洪水预报中的应用
小波神经网络
洪水预报
滁河流域
南京
基于小波神经网络辨识的PID神经MRAC研究
小波神经网络
PID神经网络
BP神经网络
模型参考自适应控制
基于小波神经网络模型的含沙量预测研究
小波函数
BP神经网络
含沙量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波神经网络的边坡预报模型研究
来源期刊 城市勘测 学科 工学
关键词 边坡变形 边坡预报 小波分析 小波神经网络
年,卷(期) 2009,(4) 所属期刊栏目 测绘技术
研究方向 页码范围 138-140
页数 3页 分类号 TU433
字数 1896字 语种 中文
DOI 10.3969/j.issn.1672-8262.2009.04.043
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐佳 辽宁工程技术大学测绘与地理科学学院 11 100 6.0 10.0
2 杨帆 辽宁工程技术大学测绘与地理科学学院 84 708 14.0 23.0
3 秦真珍 辽宁工程技术大学测绘与地理科学学院 3 43 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (56)
参考文献  (10)
节点文献
引证文献  (7)
同被引文献  (12)
二级引证文献  (4)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(5)
  • 参考文献(1)
  • 二级参考文献(4)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
边坡变形
边坡预报
小波分析
小波神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
城市勘测
双月刊
1672-8262
42-1309/TU
大16开
武汉市汉口万松园路209号
38-440
1986
chi
出版文献量(篇)
5323
总下载数(次)
16
总被引数(次)
16303
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导