作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高蛋白质二级结构预测精度,提出一种新的网络模型和编码方法.首先利用基因表达式编程(GEP)的全局搜索能力同时进化设计神经网络的结构和连接权;其次,对神经网络输入层编码进行了改进,添加了氨基酸残基所处的疏水环境.用PDB-Select25中的36条蛋白质共6 122个残基进行测试,结果表明提出的网络模型和编码方法能有效提高蛋白质二级结构预测的精度.
推荐文章
蛋白质二级结构的协同训练预测方法
协同训练
蛋白质
二级结构预测
支持向量机
神经网络
优化多核SVM的蛋白质二级结构预测
蛋白质
二级结构预测
多核支持向量机
特征提取
特征融合
线性加权
基于改进牛顿算法的蛋白质二级结构预测
改进牛顿算法
蛋白质二级结构预测
Profile编码
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 蛋白质二级结构预测方法研究
来源期刊 计算机工程与应用 学科 工学
关键词 蛋白质 二级结构预测 基因表达式编程 神经网络
年,卷(期) 2009,(36) 所属期刊栏目 研究、探讨
研究方向 页码范围 44-46
页数 3页 分类号 TP183
字数 3874字 语种 中文
DOI 10.3778/j.issn.1002-8331.2009.36.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王艳春 青岛农业大学信息科学与工程学院 22 124 6.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (7)
参考文献  (5)
节点文献
引证文献  (5)
同被引文献  (4)
二级引证文献  (4)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(4)
  • 引证文献(2)
  • 二级引证文献(2)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
蛋白质
二级结构预测
基因表达式编程
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导