基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高光谱图像的快速准确分类是遥感图像处理的关键技术之一.本文提出了区域特征光谱(RFS)的概念,并采用空间邻域聚类方法提取区域特征光谱;提出了以区域特征光谱作为SOFM神经网络输入的RFS-SOFM高光谱图像快速分类方法,该方法通过区域特征光谱代替单个像元光谱实现神经网络运算量的降低和对图像噪声的抑制.对AVIRIS图像数据的仿真结果表明:RFS-SOFM分类精度高于SOFM神经网络和K-均值算法,计算量约为K-均值的163.6%,SOFM神经网络的5.9%.
推荐文章
基于加权K近邻和卷积神经网络的高光谱图像分类
高光谱图像分类
K近邻
卷积神经网络
一种基于双忆阻的SOFM神经网络系统设计研究
SOFM神经网络
忆阻器
双忆阻结构
权值电压
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于SOFM神经网络的高光谱图像快速分类方法
来源期刊 兵工学报 学科 工学
关键词 摄影测量与遥感技术 高光谱图像 分类 SOFM神经网络 区域特征光谱
年,卷(期) 2009,(2) 所属期刊栏目
研究方向 页码范围 165-169
页数 5页 分类号 TP751
字数 3227字 语种 中文
DOI 10.3321/j.issn:1000-1093.2009.02.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 范宁军 北京理工大学宇航科学技术学院 51 484 11.0 19.0
2 谌德荣 北京理工大学宇航科学技术学院 38 205 9.0 12.0
3 陶鹏 北京理工大学宇航科学技术学院 8 59 5.0 7.0
4 宫久路 北京理工大学宇航科学技术学院 12 75 4.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (67)
参考文献  (4)
节点文献
引证文献  (4)
同被引文献  (6)
二级引证文献  (6)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(4)
  • 参考文献(0)
  • 二级参考文献(4)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
摄影测量与遥感技术
高光谱图像
分类
SOFM神经网络
区域特征光谱
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
兵工学报
月刊
1000-1093
11-2176/TJ
大16开
北京2431信箱
82-144
1979
chi
出版文献量(篇)
5617
总下载数(次)
7
总被引数(次)
44490
论文1v1指导