原文服务方: 科技与创新       
摘要:
针对电力机车主变流器的故障,本文提出基于小波分析和支持向量机的故障诊断方法.首先,运用小波包对特征信号进行分解和重构,然后提取各频带的能量,将得到的能量值构造为特征向量,最后把特征向量输入到支持向量机,进行故障类别诊断.MATLAB仿真结果表明:该方法能够准确地对故障进行诊断.
推荐文章
基于小波包分析和SVM的透平机振动故障诊断研究
小波包分析
透平机振动故障
EMD算法
SVM
基于小波分析和支持向量机的模拟电路故障诊断
小波分析
支持向量机
方波信号
模拟电路
故障诊断
基于小波分析的主冷却剂泵转子故障诊断方法研究
小波分析
主冷却剂泵转子
故障诊断
基于小波包分解和EMD-SVM的轴承故障诊断方法
故障诊断
小波包分解
轴承
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波分析和SVM的主变流器故障诊断
来源期刊 科技与创新 学科
关键词 主变流器 故障诊断 小波分析 支持向量机
年,卷(期) 2009,(13) 所属期刊栏目 故障诊断
研究方向 页码范围 162-163,204
页数 3页 分类号 U264.3+7|U269.32+2
字数 语种 中文
DOI 10.3969/j.issn.1008-0570.2009.13.070
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈特放 长沙中南大学信息科学与工程学院 1 1 1.0 1.0
2 钟燕科 长沙中南大学信息科学与工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (14)
参考文献  (2)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
主变流器
故障诊断
小波分析
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科技与创新
半月刊
2095-6835
14-1369/N
大16开
2014-01-01
chi
出版文献量(篇)
41653
总下载数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
论文1v1指导