基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
文本分类能够很好地帮助用户整理、获取信息,在提高信息检索的速度和准确率方面显得意义重大,具有很重要的研究价值.针对以往的近似支持向量机没有考虑不均衡数据的情况,提出了通过对每个训练错误赋予一个权值来改进近似支持向量机,并给出了一种简单的参数估计方法.实验结果表明,基于加权近似支持向量机的分类算法在处理不均衡数据时,样本数少的类别分类精度得到提高,性能表现良好.
推荐文章
基于支持向量机的Web文本分类方法
支持向量机
特征提取
Web文本
文本分类
基于支持向量机的不均衡文本分类方法
混合算法
支持向量机
不均衡数据集
插值样本
文本分类
迭代进化
基于支持向量机的中文极短文本分类模型
支持向量机
jieba分词
极短文本分类
TF-IDF
基于模糊加权近似支持向量机的 Web文本分类
文本分类
近似支持向量机
模糊隶属度
平衡因子
不平衡数据
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于加权近似支持向量机的文本分类研究
来源期刊 计算机工程与设计 学科 工学
关键词 分类 近似支持向量机 加权近似支持向量机 非均衡数据 权值
年,卷(期) 2009,(15) 所属期刊栏目 人工智能
研究方向 页码范围 3594-3596
页数 3页 分类号 TP391.4
字数 3097字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 宋顺林 江苏大学计算机学院 83 886 16.0 25.0
2 杨霞 江苏大学计算机学院 2 13 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (70)
参考文献  (5)
节点文献
引证文献  (9)
同被引文献  (22)
二级引证文献  (14)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(5)
  • 引证文献(5)
  • 二级引证文献(0)
2011(2)
  • 引证文献(1)
  • 二级引证文献(1)
2012(4)
  • 引证文献(2)
  • 二级引证文献(2)
2013(3)
  • 引证文献(0)
  • 二级引证文献(3)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
分类
近似支持向量机
加权近似支持向量机
非均衡数据
权值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导