基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于对局部纹理特征具有很强的描述能力,LBP(Local Binary Patterns)已经被广泛应用于模式识别、计算机视觉等相关领域,但传统的LBP在表情识别中的正确率并不高,提出了一种结合小波分解的改进LBP特征提取方法,首先使用Adaboost人脸检测算法和2D模型提取人脸图像并归一化,并使用小波分解的方法增强LBP特征,然后通过AVR(Augmented Variance Ratio)特征选取方法降维,最后使用SVM进行分类.JAFFE库上的实验证明了该方法的有效性.
推荐文章
结合LBP特征和深度学习的人脸表情识别
图像处理
LBP特征
人脸检测
卷积神经网络
人脸表情识别
基于 LBP/VAR 与 DBN 模型的人脸表情识别
深度信念网络
表情识别
局部二进制模式
深度学习
一种面向表情识别的ROI区域二级投票机制
卷积神经网络
表情识别
空间变换网络
二级投票机制
人脸样貌独立判别的协作表情识别算法
表情识别
稀疏表示
Gabor滤波器
峰值表情
面部标志物
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向表情识别的AVR和增强LBP特征选择方法
来源期刊 计算机工程与应用 学科 工学
关键词 人脸表情识别 LBP特征 AVR特征选取 SVM分类器
年,卷(期) 2009,(19) 所属期刊栏目 图形、图像、模式识别
研究方向 页码范围 184-188
页数 5页 分类号 TP391
字数 3942字 语种 中文
DOI 10.3778/j.issn.1002-8331.2009.19.057
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (17)
参考文献  (7)
节点文献
引证文献  (4)
同被引文献  (5)
二级引证文献  (14)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(3)
  • 参考文献(2)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(3)
  • 引证文献(0)
  • 二级引证文献(3)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
人脸表情识别
LBP特征
AVR特征选取
SVM分类器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导