基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
聚类是数据挖掘中重要组成部分,为了提高聚类的处理效率,将并行处理技术运用于k-means和PAM算法中,对k-means与PAM算法进行了改进。实验结果表明:并行k-means算法相对串行k-means算法有更好的执行效率;且k-means算法有比PAM算法更好的并行性和可扩展性。最后,该文提出和介绍了将并行技术引入谱聚类算法。
推荐文章
基于MapReduce并行化计算的大数据聚类算法
大数据
MapReduce
并行计算
数据聚类
ABC_Kmeans聚类算法的MapReduce并行化研究
K-means
聚类
人工蜂群
MapReduce
个性化服务中的并行K-Means聚类算法
个性化服务
并行
聚类算法
基于数据预处理的并行分层聚类算法
分层聚类
并行算法
预处理数据
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚类算法的并行化研究
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 聚类算法 并行 K-MEANS PAM
年,卷(期) 2009,(8X) 所属期刊栏目
研究方向 页码范围 7010-7012
页数 3页 分类号 TP301.6
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭厚文 大连理工大学国家级示范性软件学院 2 10 1.0 2.0
2 杨爽 大连理工大学国家级示范性软件学院 6 13 2.0 3.0
3 何凤成 大连理工大学国家级示范性软件学院 2 10 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类算法
并行
K-MEANS
PAM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导