基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决脑机接口(BCI)中不同意识任务下运动想象脑电信号的分类问题,提出了一种基于PCA及SVM的识别方法.针对Hilbert-Huang变换和AR模型提取的脑电信号特征,首先采用主成分分析PCA对高维特征向量进行降维处理,然后用支持向量机进行分类.最后将本方法分类结果和Fisher线性分类、概率神经网络分类结果进行比较.实验结果表明,该方法分类正确率较高,复杂度低,具有一定的有效性,可用于脑机接口中.
推荐文章
基于ABC-SVM的运动想象脑电信号模式分类
脑电信号
人工蜂群算法
支持向量机
正则化共空间模式
模式分类
基于经验模态分解和SVM的脑电信号分类方法
脑电信号分类
经验模态分解
支撑向量机
特征提取
三类运动想象脑电信号的离线分析研究
运动想象
脑电信号
离散小波变换
自组织神经网络
粒子群优化支持向量机
基于多特征融合的运动想象脑电信号识别研究
脑电识别
特征融合
主成分分析
支持向量机
运动想象
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PCA及SVM的运动想象脑电信号识别研究
来源期刊 北京生物医学工程 学科 医学
关键词 脑机接口 主成分分析 支持向量机 希尔伯特-黄变换
年,卷(期) 2010,(3) 所属期刊栏目 论著
研究方向 页码范围 261-265
页数 分类号 R318.04
字数 4490字 语种 中文
DOI 10.3969/j.issn.1002-3208.2010.03.09
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (1840)
参考文献  (11)
节点文献
引证文献  (6)
同被引文献  (24)
二级引证文献  (2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(6)
  • 参考文献(1)
  • 二级参考文献(5)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(6)
  • 参考文献(6)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
脑机接口
主成分分析
支持向量机
希尔伯特-黄变换
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京生物医学工程
双月刊
1002-3208
11-2261/R
16开
北京安定门外安贞医院
1981
chi
出版文献量(篇)
2829
总下载数(次)
13
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导