基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究了SAR图像目标特征增强的变分方法.通过分析P M扩散方程中的扩散系数,得出梯度(Canny)边缘检测算子对SAR图像的非恒虚警性使得滤波后图像的边缘变得模糊.而ROA算子能有效地检测出图像中的边缘,但较难检测出图像中的强散射点目标.基于SAR幅度图像中相干斑噪声的Rayleigh分布,从最大后验概率估计出发,结合ROA边缘检测图像以及SAR幅度信息来构造扩散系数,建立SAR图像目标特征增强的变分模型.实测SAR图像处理结果显示该方法在充分抑制均匀区域的相干斑噪声的同时能较好地保护并增强图像的边缘和强散射区域.
推荐文章
基于贝叶斯卷积神经网络与数据增强的SAR图像目标分类方法
合成孔径雷达
目标分类
贝叶斯卷积神经网络
数据增强
基于非下采样剪切波特征提取的SAR图像目标识别方法
合成孔径雷达
目标识别
非下采样剪切波
联合稀疏表示
MSTAR数据集
基于RetinaNet的SAR图像舰船目标检测
合成孔径雷达(SAR)图像
舰船目标检测
深度学习
RetinaNet
基于目标特征的SAR图像车辆目标的方位角联合估计
合成孔径雷达
图像处理
Hough变换
提取目标主轴
方位角联合估计
目标特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于变分的SAR图像目标特征增强方法
来源期刊 红外与毫米波学报 学科 工学
关键词 SAR图像 特征增强 扩散方程 边缘检测
年,卷(期) 2010,(5) 所属期刊栏目
研究方向 页码范围 392-396
页数 分类号 TN957
字数 4639字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢美华 国防科技大学理学院数学与系统科学系 24 355 11.0 18.0
2 朱炬波 国防科技大学理学院数学与系统科学系 59 528 13.0 18.0
3 黄石生 国防科技大学理学院数学与系统科学系 3 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (13)
参考文献  (9)
节点文献
引证文献  (6)
同被引文献  (13)
二级引证文献  (19)
1980(2)
  • 参考文献(1)
  • 二级参考文献(1)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(2)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(3)
  • 引证文献(1)
  • 二级引证文献(2)
2015(5)
  • 引证文献(2)
  • 二级引证文献(3)
2016(4)
  • 引证文献(1)
  • 二级引证文献(3)
2017(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(6)
  • 引证文献(0)
  • 二级引证文献(6)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
SAR图像
特征增强
扩散方程
边缘检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
红外与毫米波学报
双月刊
1001-9014
31-1577/TN
大16开
上海市玉田路500号
4-335
1982
chi
出版文献量(篇)
2620
总下载数(次)
3
总被引数(次)
28003
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导