作者:
原文服务方: 探测与控制学报       
摘要:
针对现有合成孔径雷达(SAR)图像特征提取方面的不足,提出基于非下采样剪切波(NSST)特征提取的SAR目标识别方法.该方法采用NSST对SAR图像进行分解获得多层次的子代图像,这些子代图像具有良好的平移不变性并且可以很好地反映目标的主要和细节特征.在分类阶段,采用联合稀疏表示对多层次NSST子代图像进行联合表征;联合稀疏表示在独立表示各个分量的同时考察了不同分量之间的相关性,因此可以有效提高联合表征的精度;最终,根据整体重构误差判定测试样本的目标类别.基于MSTAR数据集对提出方法进行测试,实验结果分析表明该方法在标准操作条件、型号差异、俯仰角差异以及噪声干扰的条件下均可以保持优异性能.
推荐文章
基于峰值匹配的SAR图像飞机目标识别方法
合成孔径雷达
目标识别
方位角计算
峰值匹配
基于机器视觉的图像目标识别方法综述
机器视觉
图像目标识别
图像预处理
图像分割
基于增强字典稀疏表示分类的SAR目标识别方法
合成孔径雷达
目标识别
增强字典
稀疏表示分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于非下采样剪切波特征提取的SAR图像目标识别方法
来源期刊 探测与控制学报 学科
关键词 合成孔径雷达 目标识别 非下采样剪切波 联合稀疏表示 MSTAR数据集
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 75-80
页数 6页 分类号 TN957
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 丁慧洁 广东开放大学人工智能学院 4 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (120)
共引文献  (69)
参考文献  (21)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(7)
  • 参考文献(2)
  • 二级参考文献(5)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(22)
  • 参考文献(2)
  • 二级参考文献(20)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(21)
  • 参考文献(5)
  • 二级参考文献(16)
2015(7)
  • 参考文献(3)
  • 二级参考文献(4)
2016(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
合成孔径雷达
目标识别
非下采样剪切波
联合稀疏表示
MSTAR数据集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
探测与控制学报
双月刊
1008-1194
61-1316/TJ
16开
1979-01-01
chi
出版文献量(篇)
2424
总下载数(次)
0
总被引数(次)
12559
论文1v1指导