原文服务方: 现代电子技术       
摘要:
交通标志识别是智能车辆基于视觉传感感知道路信息的关键技术,针对传统识别技术不能满足实时性和准确性的要求,采用一种基于Gabor特征提取和支持向量机(SVM)交通标志识别方法.首先选定交通标志图像进行灰度化、图像增强处理,采用Gabor滤波技术进行特征提取,针对大量的特征信息采用主成分分析(PCA)降维,并用支持向量机分类识别.最后在Matlab平台上进行实验,验证该方法的识别率和识别时间.实验结果表明,该方法较传统方法识别精度高,实时性好.
推荐文章
交通标志识别方法设计
交通标志
图像识别
BP神经网络
基于图像特征及改进支持向量机算法的交通标志识别
图像特征
支持向量机
模拟退火算法
交通标志识别
基于不变矩和神经网络的交通标志识别方法研究
智能运输系统
交通标志识别
神经网络
BP算法
不变矩
基于高稳定SURF特征的交通标志识别
交通标志
目标识别
SURF特征
稳定性
权值计分策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Gabor特征提取和SVM交通标志识别方法研究
来源期刊 现代电子技术 学科
关键词 交通标志识别 图像灰度化 图像增强 Gabor特征提取 主成分分析 支持向量机
年,卷(期) 2018,(17) 所属期刊栏目 智能交通与导航
研究方向 页码范围 136-140
页数 5页 分类号 TN911.73-34
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2018.17.030
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张传伟 西安科技大学机械工程学院 81 430 12.0 17.0
2 崔万豪 西安科技大学机械工程学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (49)
参考文献  (11)
节点文献
引证文献  (5)
同被引文献  (15)
二级引证文献  (2)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(10)
  • 参考文献(2)
  • 二级参考文献(8)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(5)
  • 引证文献(4)
  • 二级引证文献(1)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
交通标志识别
图像灰度化
图像增强
Gabor特征提取
主成分分析
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
相关基金
陕西省自然科学基金
英文译名:Natural Science Basic Research Plan in Shaanxi Province of China
官方网址:
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导