基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对现有增量型非负矩阵分解算法存在的一些缺陷进行改进,给出了一个基于误差判断的增量算法有效性准则.在此基础上,利用增加样本前的非负矩阵分解结果进行增量分解初始化,提出了一种新的动态非负矩阵分解算法.在多个数据集上的实验结果表明该算法可以实现对基矩阵和编码矩阵的即时更新,且具有较低的计算复杂度,在处理动态数据集时,还可有效识别噪声点,是一个有效的动态分解算法.
推荐文章
用于独立特征学习的稀疏非负矩阵分解算法
非负矩阵分解
L2,1/2稀疏
独立特征学习
余弦相似性
非负矩阵分解及其改进方法
非负矩阵
非负分解
优化函数
迭代方程
基于分块非负矩阵分解人脸识别增量学习
非负矩阵分解
局部特征提取
人脸识别
增量学习
基于非负矩阵分解和SFIM的图像融合算法
非负矩阵分解
SFIM
多光谱
图像融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 动态学习的非负矩阵分解算法
来源期刊 智能系统学报 学科 工学
关键词 非负矩阵分解 动态学习 初始化 误差准则
年,卷(期) 2010,(4) 所属期刊栏目
研究方向 页码范围 320-326
页数 分类号 TP181
字数 5585字 语种 中文
DOI 10.3969/j.issn.1673-4785.2010.04.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 叶东毅 福州大学数学与计算机科学学院 112 1572 18.0 36.0
2 杨志君 福州大学数学与计算机科学学院 2 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非负矩阵分解
动态学习
初始化
误差准则
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导