基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对K均值聚类算法易陷入局部最小的缺点,提出了一种多种群协同进化的微粒群和K均值混合聚类算法,它将整个种群分解为多个子种群,各子种群独立进化,周期性地更新共享信息.同时将此算法与现有的基于遗传算法的K均值聚类算法进行了比较.实验结果证明,该算法能有效地克服传统的K均值算法易陷入局部极小值的缺点,同时全局收敛能力优于基于遗传算法的K均值聚类算法.
推荐文章
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
基于变异的k-means聚类算法
聚类
mk-means算法
变异
基于NKL和K-means聚类的协同过滤推荐算法
协同过滤
推荐算法
矩阵稀疏
K-means
相似性度量
K-means聚类算法初始中心选择研究
K-means聚类算法
K个聚类中心
密度参数
K-means算法改进
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多种群协同进化的K-means聚类算法
来源期刊 南京师大学报(自然科学版) 学科 工学
关键词 多种群 微粒群算法 K均值算法 协同进化
年,卷(期) 2010,(3) 所属期刊栏目
研究方向 页码范围 122-126
页数 分类号 TP391
字数 3816字 语种 中文
DOI 10.3969/j.issn.1001-4616.2010.03.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邵增珍 山东师范大学信息科学与工程学院 60 455 12.0 18.0
2 曲建华 山东师范大学管理与经济学院 11 22 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多种群
微粒群算法
K均值算法
协同进化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京师大学报(自然科学版)
季刊
1001-4616
32-1239/N
大16开
南京市宁海路122号南京师范大学
1955
chi
出版文献量(篇)
2319
总下载数(次)
4
总被引数(次)
17979
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导