作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
建立在统计学习理论的VC维理论和结构风险最小化原理基础之上的支持向量机(SVM)在理论上保证了模型的最大泛化能力,因此将支持向量机理论应用于电力负荷预测可以获得很好的效果,但是传统SVM回归预测算法对于不同的样本均采用相同的参数,无法体现各样本的重要程度的区别,而且将支持向量机理论应用于实际中也存在时样本数据进行特征选择和对支持向量机模型参数进行选择的问题.因此提出了将遗传算法应用于短期的电力负荷预测中来对加权支持向量机模型进行特征选择和模型参数确定.
推荐文章
基于支持向量机的短期负荷预测
电力系统负荷
短期预测
支持向量机
网格法
野草算法和支持向量机相融合的短期负荷预测
电力系统
短期负荷
野草算法
相空间重构
基于相似日的支持向量机短期负荷预测
负荷预测
最小二乘支持向量机
细菌趋化
相似日
日期距离
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法的加权支持向量机的短期电力负荷预测
来源期刊 工业控制计算机 学科 工学
关键词 支持向量机 遗传算法 特征选择 电力负荷预测
年,卷(期) 2010,(5) 所属期刊栏目 测控系统
研究方向 页码范围 71-72,75
页数 分类号 TP3
字数 3744字 语种 中文
DOI 10.3969/j.issn.1001-182X.2010.05.033
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 桂红霞 武汉理工大学自动化学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (164)
参考文献  (4)
节点文献
引证文献  (3)
同被引文献  (10)
二级引证文献  (1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
遗传算法
特征选择
电力负荷预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工业控制计算机
月刊
1001-182X
32-1764/TP
大16开
南京市龙蟠路173号江苏省计算技术研究所
28-60
1988
chi
出版文献量(篇)
13243
总下载数(次)
60
总被引数(次)
46621
论文1v1指导