基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为避免每次训练都必须随机生成样本序列的问题,提出网络动态拓扑的概念,对各种前向式网络进行统一表述;提出正、反序训练方法,并给出解的唯一性证明,同时,网络连接权在初始化时不再需要随机生成.回归分析人工神经网络有效解决了两次随机过程对训练结果造成的不利影响,在稳定性和可信性上对人工神经网络的应用提供了理论依据和技术支持.
推荐文章
基于人工神经网络的CAD技术
人工神经网络
CAD技术
基于人工神经网络的非线性回归
人工神经网络
非线性回归
理论基础
实践分析
基于广义回归网络的动态权重回归型神经网络集成方法研究
神经网络集成
BP网络
动态权重
广义回归神经网络
人工神经网络在材料研究中的应用
人工神经网络
性能
工艺
相变
组织模拟
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 回归分析人工神经网络
来源期刊 吉林大学学报(信息科学版) 学科 工学
关键词 人工智能 人工神经网络 回归分析
年,卷(期) 2010,(2) 所属期刊栏目 计算机科学与技术
研究方向 页码范围 147-152
页数 6页 分类号 TP183
字数 3111字 语种 中文
DOI 10.3969/j.issn.1671-5896.2010.02.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林和平 东北师范大学计算机学院 67 376 10.0 16.0
2 张秉正 东北师范大学计算机学院 2 8 1.0 2.0
3 乔幸娟 东北师范大学计算机学院 2 8 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (45)
参考文献  (9)
节点文献
引证文献  (8)
同被引文献  (21)
二级引证文献  (31)
1943(1)
  • 参考文献(1)
  • 二级参考文献(0)
1958(1)
  • 参考文献(1)
  • 二级参考文献(0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(2)
  • 参考文献(0)
  • 二级参考文献(2)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(5)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(3)
  • 引证文献(1)
  • 二级引证文献(2)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(4)
  • 引证文献(2)
  • 二级引证文献(2)
2015(6)
  • 引证文献(1)
  • 二级引证文献(5)
2016(7)
  • 引证文献(0)
  • 二级引证文献(7)
2017(6)
  • 引证文献(0)
  • 二级引证文献(6)
2018(6)
  • 引证文献(0)
  • 二级引证文献(6)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
人工智能
人工神经网络
回归分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
吉林大学学报(信息科学版)
双月刊
1671-5896
22-1344/TN
大16开
长春市南湖大路5372号
1983
chi
出版文献量(篇)
2333
总下载数(次)
2
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导