基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机是一种能在训练样本数很少的情况下达到很好分类推广能力的学习算法.支持向量机在选择支撑矢量时却进行了大量不必要的运算,成为其应用的瓶颈问题.因此在基于支持向量的分类器学习算法中,预先选择支撑向量是非常重要的.投影中心距离算法是一种能够预选取支撑矢量的方法,该方法可以有效地预选取出包含支持向量的边界集,在不影响支持向量机的分类能力情况下,大大地减少了训练样本,提高了支持向量机的训练速度.本文采用投影中心距离算法进行支撑矢量的预选取,通过对人工线性、非线性数据及MINST字符库的实验证明了该方法的有效性和可行性.
推荐文章
基于随机中心距离排序的支持向量预选取方法
支持向量预选取
随机中心
距离排序
边界样本集
一种改进的LSSVM支持向量预选取算法
最小二乘支持向量机
K均值聚类
K最近邻
预选取算法
稀疏化
基于向量投影的代谢支持向量机乙烯精馏产品质量软测量建模
动态建模
预测
模型
乙烯精馏
代谢支持向量机
向量投影
软测量
基于几何算法的投影孪生支持向量机
模式分类
支持向量机
投影孪生支持向量机
计算几何
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于投影中心距离的支持向量预选取
来源期刊 四川大学学报(自然科学版) 学科 工学
关键词 支持向量机 投影中心距离 支持向量
年,卷(期) 2010,(1) 所属期刊栏目 电子信息科学
研究方向 页码范围 85-90
页数 6页 分类号 TP391.41
字数 3727字 语种 中文
DOI 10.3969/j.issn.0490-6756.2010.01.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何小海 四川大学电子信息学院图像信息研究所 395 2334 21.0 30.0
2 吴炜 四川大学电子信息学院图像信息研究所 82 916 17.0 25.0
3 杨晓敏 四川大学电子信息学院图像信息研究所 77 789 17.0 24.0
4 陈默 四川大学电子信息学院图像信息研究所 36 362 11.0 18.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (178)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(2)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
投影中心距离
支持向量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川大学学报(自然科学版)
双月刊
0490-6756
51-1595/N
大16开
成都市九眼桥望江路29号
62-127
1955
chi
出版文献量(篇)
5772
总下载数(次)
10
总被引数(次)
25503
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导