基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对故障滚动轴承振动信号具有非平稳性,提出基于局域波法和核主元分析-最小二乘支持向量机(KPCA-LSSVM)的故障诊断方法.先对轴承振动信号进行局域波分解得到若干内禀模式函数(IMF),分别计算各IMF分量的特征能量、奇异值和AR模型参数作为原始特征向量,再用KPCA将原始特征向量映射到高维特征空间提取主元构造新的特征向量,将其作为LSSVM分类器的输入来实现轴承的故障诊断.故障诊断试验结果表明,KPCA-LSSVM诊断方法通过KPCA得到更多的识别信息,改善了LSSVM的分类性能,相对于直接LSSVM诊断方法具有更优的泛化性,可准确识别轴承的故障类别和严重程度.
推荐文章
基于DE-LSSVM的滚动轴承故障诊断
集合经验模式分解
能量熵
差分进化算法
最小二乘支持向量机
故障诊断
基于小波变换的滚动轴承故障诊断分析
小波分析
滚动轴承
故障诊断
经验模态分解结合包络谱LSSVM的滚动轴承故障诊断
滚动轴承
故障诊断
经验模态分解
包络谱分析
最小二乘支持向量机
基于角域经验小波变换的滚动轴承故障诊断
变转速
滚动轴承
故障诊断
角域经验小波变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于局域波法和KPCA-LSSVM的滚动轴承故障诊断
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 滚动轴承 故障诊断 局域波法 核主元分析 最小二乘支持向量机
年,卷(期) 2010,(8) 所属期刊栏目
研究方向 页码范围 1519-1524
页数 6页 分类号 TH133.3|TH17|TP181
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2010.08.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周晓军 239 2169 23.0 31.0
2 杨富春 20 141 7.0 11.0
3 张文斌 27 188 8.0 13.0
4 杨先勇 12 42 3.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (82)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
故障诊断
局域波法
核主元分析
最小二乘支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导