基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于统计检测的方法,提出了一种基于遗传蚂蚁算法与支持向量机联合优化的入侵检测技术.本算法在利用遗传蚂蚁算法对数据特征进行提取的同时,对支持向量机参数进行优化,利用遗传算法快速得到局部最优值,然后利用蚂蚁算法的全局搜索特点得到全局最优值,从而可以明显提高入侵检测正确率,缩短检测时间.仿真表明,本算法检测正确率与本文提到的其他方法相比明显提高.
推荐文章
改进蚁群算法优化支持向量机的网络入侵检测
网络入侵
蚁群优化算法
支持向量机
参数优化
基于蚁群优化算法和支持向量机相结合的医院网络非法入侵检测
医院网络
非法入侵检测
蚁群优化算法
支持向量机
入侵检测模型
全局搜索
基于Bagging支持向量机集成的入侵检测研究
入侵检测
支持向量机
集成
Bagging
支持向量机在网络异常入侵检测中的应用
网络入侵检测
异常检测
支持向量机
统计学习理论
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于蚂蚁算法与支持向量机的入侵检测技术
来源期刊 微型机与应用 学科 工学
关键词 遗传蚂蚁算法 支持向量机 入侵检测
年,卷(期) 2010,(7) 所属期刊栏目 网络与通信
研究方向 页码范围 47-51
页数 分类号 TP393.08
字数 4960字 语种 中文
DOI 10.3969/j.issn.1674-7720.2010.07.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡傲 空军工程大学电讯工程学院 4 19 2.0 4.0
2 殷肖川 空军工程大学电讯工程学院 49 397 10.0 18.0
3 丁赢 空军工程大学电讯工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (14)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遗传蚂蚁算法
支持向量机
入侵检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
相关基金
陕西省自然科学基金
英文译名:Natural Science Basic Research Plan in Shaanxi Province of China
官方网址:
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导