基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
朴素贝叶斯分类器难以获得大量有类标签的训练集,而且传统的贝叶斯分类方法在有新的训练样本加入时,需要重新学习已学习过的样本,耗费大量时间.为此引入增量学习方法,在此基础上提出了属性加权朴素贝叶斯算法,该算法通过属性加权来提高朴素贝叶斯分类器的性能,加权参数直接从训练数据中学习得到.通过由Weka推荐的UCI数据集的实验结果表明,该算法是可行的和有效的.
推荐文章
一种新型加权朴素贝叶斯分类算法
数据挖掘
朴素贝叶斯
属性频率
基于属性约简的PLS加权朴素贝叶斯分类
加权朴素贝叶斯分类
属性约简
偏最小二乘回归
基于改进特征加权的朴素贝叶斯分类算法
文本分类
朴素贝叶斯
JS散度
词频
文本频率
类别频率
基于引力模型的朴素贝叶斯分类算法
分类算法
朴素贝叶斯
引力模型
遥感图像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种加权朴素贝叶斯分类增量学习模型
来源期刊 计算机与现代化 学科 工学
关键词 朴素贝叶斯分类器 属性加权 增量学习 训练集
年,卷(期) 2010,(5) 所属期刊栏目 人工智能
研究方向 页码范围 30-32
页数 分类号 TP18
字数 2615字 语种 中文
DOI 10.3969/j.issn.1006-2475.2010.05.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 梁永全 山东科技大学信息科学与工程学院 82 678 15.0 21.0
2 李金华 山东科技大学信息科学与工程学院 1 3 1.0 1.0
3 吕芳芳 山东科技大学信息科学与工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (72)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (5)
二级引证文献  (10)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
朴素贝叶斯分类器
属性加权
增量学习
训练集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导