原文服务方: 计算机应用研究       
摘要:
为实现由不同统计特性和概率分布平滑特性信号得到混合信号的盲分离,对基于支持向量机的邻域风险最小化概率密度估计算法进行研究,提出一种邻域函数的构造方法,将其与自然梯度批处理算法相结合,形成一种新的自适应盲分离算法;利用广义高斯模型分析了分离算法的精确度.通过仿真实验,验证了该算法能分离统计特性不同的混合信号,相比于基于经验风险最小化的方法,该方法在收敛速度和精度方面的性能有很大提高.
推荐文章
概率密度估计和阴影抑制的运动目标检测
运动检测
阴影抑制
核密度估计
色彩空间
模式识别
基于概率密度估计盲分离的通信信号盲侦察技术
通信对抗
侦察
盲源分离
概率密度函数
一种新颖的领域自适应概率密度估计器
概率密度函数
无偏置v-SVR
中心约束最小包含球
核心集
领域自适应
基于核函数和带宽的海杂波概率密度函数估计
海杂波
核密度估计
非参数化估计方法
概率密度函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于邻域风险最小化概率密度估计的自适应盲分离算法
来源期刊 计算机应用研究 学科
关键词 邻域风险 概率密度估计 支持向量机 激活函数 自然梯度算法 盲分离
年,卷(期) 2010,(8) 所属期刊栏目
研究方向 页码范围 3096-3099
页数 分类号 TN911
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2010.08.076
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 江桦 33 267 10.0 14.0
2 栾海妍 5 27 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (39)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(5)
  • 参考文献(1)
  • 二级参考文献(4)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(4)
  • 参考文献(2)
  • 二级参考文献(2)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
邻域风险
概率密度估计
支持向量机
激活函数
自然梯度算法
盲分离
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导