基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对过程工业中强噪声环境下实时采集的控制过程海量数据难以在线精确检测的问题,提出了基于阶数自学习自回归隐马尔可夫模型(ARHMM)的工业控制过程异常数据在线检测方法.该算法采用自同归(AR)模型对时间序列进行拟合,利用隐马尔科夫模型(HMM)作为数据检测的工具,避免了传统检测方法中需要预先设定检测阈值的问题,并将传统的BDT(Brockwell-Dahlhaus-Trindade)算法改进成为对于时间和阶数均实施迭代的双重迭代结构,以实现ARHMM参数在线更新.为了减小异常数据对ARHMM参数更新的影响,本文采用先检测后更新的方式,根据检测结果采取不同的更新方法,提高了该算法的鲁棒性.模型数据仿真与应用试验结果证明,该算法具有较高的检测精度和抗干扰能力,同时具备在线检测的能力.通过与传统基于AR模型的异常数据检测方法比较,证明了该方法更适合作为过程工业控制过程数据的异常检测工具.
推荐文章
基于马尔科夫模型和卷积神经网络的异常数据检测方法
异常检测
马尔科夫模型
卷积神经网络
多维数据
基于马尔可夫模型的临床序列异常检测
异常检测
马尔可夫模型
编辑距离
序列相似匹配
基于隐马尔可夫模型的程序行为异常检测
入侵检测
隐马尔可夫模型
异常检测
系统调用
基于隐马尔可夫模型的拷贝数变异检测算法研究
拷贝数变异
变异检测
隐马尔可夫模型
裂读法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 应用阶数自学习自回归隐马尔可夫模型对控制过程异常数据的在线检测
来源期刊 控制理论与应用 学科 工学
关键词 自回归隐马尔科夫模型 BDT 异常数据检测 在线检测
年,卷(期) 2011,(5) 所属期刊栏目 论文
研究方向 页码范围 631-638
页数 分类号 TP273
字数 6445字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 毛志忠 东北大学信息科学与工程学院 111 949 17.0 25.0
5 刘芳 东北大学信息科学与工程学院 36 386 10.0 18.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (2)
参考文献  (12)
节点文献
引证文献  (5)
同被引文献  (18)
二级引证文献  (0)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(3)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自回归隐马尔科夫模型
BDT
异常数据检测
在线检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制理论与应用
月刊
1000-8152
44-1240/TP
大16开
广州市五山华南理工大学内
46-11
1984
chi
出版文献量(篇)
4979
总下载数(次)
16
总被引数(次)
72515
论文1v1指导