基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出将Kohonen网络、Elman神经网络和遗传算法结合起来建立一种智能组合预测模型,此模型能够综合各种单一预测模型的优点,内在结构随时间的推移不断变化,符合电力负荷的特点,提高了负荷预测的精度.文中给出了三种网络模型进行短期电力负荷预测的仿真结果比较,从而验证了智能组合预测模型的合理性和良好的应用前景.
推荐文章
天气因素在短期电力负荷预测中的应用
BP人工神经网络
短期电力负荷预测
电力系统
天气因素
短期电力负荷预测方法研究
电力系统
短期电力负荷
灰色预测方法
人工神经网络在电力系统短期负荷预测中的应用
多层神经网络
BP模型
负荷预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 智能组合预测法在短期电力负荷预测中的应用研究
来源期刊 安徽工程大学学报 学科 工学
关键词 智能组合 短期负荷预测 Elman神经网络 遗传算法
年,卷(期) 2011,(1) 所属期刊栏目
研究方向 页码范围 62-65
页数 分类号 TP391
字数 2719字 语种 中文
DOI 10.3969/j.issn.2095-0977.2011.01.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田丽 安徽工程大学安徽省电气传动与控制重点实验室 105 450 10.0 14.0
2 魏安静 安徽工程大学安徽省电气传动与控制重点实验室 16 61 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (40)
参考文献  (6)
节点文献
引证文献  (9)
同被引文献  (11)
二级引证文献  (8)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(3)
  • 引证文献(3)
  • 二级引证文献(0)
2013(3)
  • 引证文献(2)
  • 二级引证文献(1)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
智能组合
短期负荷预测
Elman神经网络
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安徽工程大学学报
双月刊
2095-0977
34-1318/N
大16开
安徽省芜湖市赭山东路8号
1983
chi
出版文献量(篇)
1898
总下载数(次)
5
论文1v1指导