原文服务方: 计算机测量与控制       
摘要:
准确的负荷预测,可以合理安排机组启停,降低发电成本,特别是短期负荷预测对电力系统控制、运行和规划都有重要意义;传统的预测方法不能及时准确地反映需求响应,在Hadoop环境下利用分布式支持向量回归机(Support Vector Regression,SVR)实现负荷预测,同时使用基于均匀设计的自调用SVR(UD-SVR)方法进行参数寻优,进一步提高文章实现的分布式SVR算法精度;通过真实的电力负荷数据集验证该算法,实验数据来自我国西部某地级市连续424天的真实用电量数据;结果表明,文章改进后的算法用于短期电力负荷预测是可行的,不仅预测准确度又在原有基础上明显提高,并且随着数据量的增加,计算速度也大幅提高,减小了负荷预测时间.
推荐文章
集成RS和SVR的电力系统短期负荷预测方法
电力系统
训练样本
短期负荷预测
粗糙集
支持向量回归
基于SVR算法的短期负荷快速预测研究
短期负荷预测
支持向量机
支持向量回归
天气因素在短期电力负荷预测中的应用
BP人工神经网络
短期电力负荷预测
电力系统
天气因素
短期电力负荷预测方法研究
电力系统
短期电力负荷
灰色预测方法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 分布式SVR在短期负荷预测中的研究
来源期刊 计算机测量与控制 学科
关键词 负荷预测 Hadoop平台 支持向量机 参数优化
年,卷(期) 2019,(3) 所属期刊栏目 设计与应用
研究方向 页码范围 173-176,182
页数 5页 分类号 TP338.6
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2019.03.035
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张志禹 西安理工大学自动化与信息工程学院 68 466 12.0 18.0
2 侯凯 西安理工大学自动化与信息工程学院 2 0 0.0 0.0
3 李晨曦 西安理工大学自动化与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (67)
共引文献  (586)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(12)
  • 参考文献(3)
  • 二级参考文献(9)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
负荷预测
Hadoop平台
支持向量机
参数优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导