基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统相关向量机在训练过程中易受异常点影响的问题,提出了一种鲁棒相关向量机模型,并将其应用于转炉炼钢终点碳含量和温度的预报.通过为每一个训练样本设定独立的噪声方差系数,并使其在训练过程中随模型预测误差的增大而逐渐减小来降低异常点的影响,同时依据贝叶斯证据框架给出了模型超参数的迭代计算公式,进行参数的优化.使用标准测试数据和转炉炼钢实际生产数据进行仿真,结果表明本文模型具有较好的预报精度和鲁棒性.
推荐文章
基于PSO-ICA和RBF神经网络的转炉炼钢终点预报模型
转炉
终点预报
独立成分分析
微粒群优化算法
径向基函数神经网络
铜转炉吹炼终点预报模型研究
铜转炉
主元分析法
遗传算法
Elman神经网络
转炉炼钢多变量神经网络预报模型
终点温度
组分含量
神经网络
命中率
韶钢120 t转炉炼钢终点静态控制模型开发与应用
转炉炼钢
复合模型
造渣料
吹氧量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于鲁棒相关向量机的转炉炼钢终点预报模型
来源期刊 控制理论与应用 学科 工学
关键词 转炉炼钢 终点预报 相关向量机 噪声方差系数
年,卷(期) 2011,(3) 所属期刊栏目 论文与报告
研究方向 页码范围 343-350
页数 分类号 TF721
字数 7792字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韩敏 大连理工大学电子信息与电气工程学部 200 2311 23.0 33.0
2 赵耀 大连理工大学电子信息与电气工程学部 6 37 3.0 6.0
3 杨溪林 7 64 3.0 7.0
4 林东 3 15 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (57)
参考文献  (11)
节点文献
引证文献  (11)
同被引文献  (19)
二级引证文献  (3)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(3)
  • 参考文献(2)
  • 二级参考文献(1)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(7)
  • 参考文献(1)
  • 二级参考文献(6)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(6)
  • 参考文献(3)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(3)
  • 引证文献(3)
  • 二级引证文献(0)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
转炉炼钢
终点预报
相关向量机
噪声方差系数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制理论与应用
月刊
1000-8152
44-1240/TP
大16开
广州市五山华南理工大学内
46-11
1984
chi
出版文献量(篇)
4979
总下载数(次)
16
总被引数(次)
72515
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导