基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了有效地实现网络虚拟环境的个性化信息推荐,提出一种针对网络三维虚拟环境的用户访问模式聚类算法,即基于多目标粒子群优化的模糊C-均值聚类算法(MOPSO-based FCM,MPF)。MPF算法结合了粒子群优化算法(particle swarm optimization,PSO)与模糊C-均值算法(fuzzy C-means,FCM)的优点,通过PSO的全局空间搜索避免了FCM算法对初始值、噪声数据敏感与容易陷入局部最优等。为了改善聚类效果,在PSO中设计一个基于双目标(最小化类内距离与最大化类间距离)的粒子适应度函数。最后用标准数据集与模拟数据集分别对MPF算法进行性能测试,实验结果表明:本算法在聚类精度方面表现良好。
推荐文章
基于ISODATA的用户访问路径聚类算法
ISODATA
聚类
用户访问模式
一种新的复杂网络聚类算法
复杂网络
网络聚类
网络簇结构
谱方法
粒子群聚类算法
虚拟环境下大数据智能并行聚类方法研究
虚拟环境
大数据
智能并行
聚类方法
一种新的Web频繁访问模式挖掘算法
Web挖掘
访问模式
频繁访问模式
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种新的基于网络虚拟环境的用户访问模式聚类算法
来源期刊 山东大学学报:工学版 学科 工学
关键词 网络虚拟环境 用户访问模式聚类 多目标粒子群优化 模糊C均值
年,卷(期) 2011,(6) 所属期刊栏目 机器学习与数据挖掘
研究方向 页码范围 43-49
页数 分类号 TP301.6
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈健 1 0 0.0 0.0
2 许春耀 1 0 0.0 0.0
3 余轮 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (114)
共引文献  (749)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(4)
  • 参考文献(0)
  • 二级参考文献(4)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(10)
  • 参考文献(0)
  • 二级参考文献(10)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(8)
  • 参考文献(0)
  • 二级参考文献(8)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(9)
  • 参考文献(0)
  • 二级参考文献(9)
2003(15)
  • 参考文献(1)
  • 二级参考文献(14)
2004(11)
  • 参考文献(2)
  • 二级参考文献(9)
2005(9)
  • 参考文献(2)
  • 二级参考文献(7)
2006(10)
  • 参考文献(3)
  • 二级参考文献(7)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(7)
  • 参考文献(2)
  • 二级参考文献(5)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络虚拟环境
用户访问模式聚类
多目标粒子群优化
模糊C均值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
总被引数(次)
24236
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导