作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对用BP神经网络进行预测时权值难以确定的问题,提出了一种基于将灰色理论与BP神经网络相结合的预测算法.采用数量研究法,选取重庆市某供电局1999年到2006年的售电量作为样本,利用不同的灰色模型对样本进行预测,再选出预测的最优值对BP网络进行训练,最后用已训练好的BP网络对样本数据进行预测.经实例预测表明:灰色理论与BP网络相结合的预测精度与单一的预测模型相比有了明显的改进,该算法在理论和实践应用中都是可行的,并为电力部门的生产运行和规划提供了重要的参考.
推荐文章
基于模糊灰色聚类AMPSO-BP短期负荷预测
负荷预测
神经网络
模糊灰色聚类
自适应变异粒子群优化
基于BP神经网络短期负荷预测的实现
BP神经网络
短期负荷预测
数据预处理
模糊逻辑
数据修正
基于BP神经网络与灰色预测模型的公路运量预测
BP神经网络
灰色预测模型
公路运量预测
多元线性回归
基于灰色粗糙集与BP神经网络的设备故障预测
灰色关联分析
粗糙集
BP神经网络
约简
故障预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于灰色理论与BP网络的负荷预测
来源期刊 辽宁工程技术大学学报(自然科学版) 学科 工学
关键词 灰色理论 BP神经网络 负荷预测 精度 权值 预测模型
年,卷(期) 2011,(4) 所属期刊栏目 管理科学与工程
研究方向 页码范围 631-633
页数 分类号 TM715
字数 1990字 语种 中文
DOI 21-1379/N.20110613.1751.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 崔巍 大连海事大学交通运输管理学院 26 150 7.0 11.0
2 张梅 大连海事大学交通运输管理学院 1 15 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (45)
参考文献  (8)
节点文献
引证文献  (15)
同被引文献  (69)
二级引证文献  (33)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(5)
  • 参考文献(1)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(4)
  • 引证文献(4)
  • 二级引证文献(0)
2013(5)
  • 引证文献(4)
  • 二级引证文献(1)
2014(11)
  • 引证文献(3)
  • 二级引证文献(8)
2015(3)
  • 引证文献(0)
  • 二级引证文献(3)
2016(13)
  • 引证文献(2)
  • 二级引证文献(11)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
灰色理论
BP神经网络
负荷预测
精度
权值
预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
辽宁工程技术大学学报(自然科学版)
月刊
1008-0562
21-1379/N
大16开
辽宁省阜新市
1979
chi
出版文献量(篇)
6319
总下载数(次)
12
总被引数(次)
52708
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导