基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了准确地对人的身份进行识别,提出了一种对采集静脉图像的全局特征和局部特征进行稀疏表示的识别算法.该算法首先应确定静脉样本库中所有的静脉对象,并在不同光强下对每一手背静脉进行采集,此外将采集图像进行适当压缩与旋转,并将变换后的所有图像作为库中描述该静脉对象的样本;其次,分别提取该静脉对象所有样本的全局特征与局部特征,并通过求解每一特征系数向量的最小1范数,对未知静脉图像的全局与局部特征进行稀疏表示;最后,融合稀疏表示结果,完成静脉识别的过程.通过在3种光强下对200个人的手背静脉进行采集,并经过图像压缩与旋转调整后建立实验所需的静脉样本数据库,识别实验表明该识别方法正确识别率达到98%以上,并且对于采集时出现多种不合作因素具有较好的鲁棒性,同时具有较好的实用价值.
推荐文章
基于多模板融合的异质手背静脉身份识别
手背静脉
多源异质
多模板融合
身份识别
基于多角度旋转积分图的手背静脉身份识别
手背静脉图像
多角度旋转积分
二维离散余弦变换
最优参数
分类识别
基于LBP和多层次结构的异质手背静脉身份识别
多源异质
手背静脉
LBP
视觉信息处理
多层次结构
身份识别
基于特征点融合小波能量特征的手背静脉识别
生物识别技术
手背静脉
特征点
小渡能量特征
加权融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于手背静脉图像多特征稀疏表示的身份识别
来源期刊 仪器仪表学报 学科 工学
关键词 手背静脉图像 特征提取 稀疏表示 身份识别
年,卷(期) 2011,(10) 所属期刊栏目 学术论文
研究方向 页码范围 2267-2274
页数 分类号 TP391.41
字数 6177字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 薛定宇 东北大学信息科学与工程学院 96 1470 19.0 36.0
2 崔建江 东北大学信息科学与工程学院 46 643 16.0 24.0
3 贾旭 东北大学信息科学与工程学院 13 65 5.0 7.0
4 刘晶 东北大学信息科学与工程学院 9 52 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (34)
参考文献  (11)
节点文献
引证文献  (8)
同被引文献  (24)
二级引证文献  (32)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(4)
  • 参考文献(4)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(4)
  • 引证文献(2)
  • 二级引证文献(2)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(6)
  • 引证文献(0)
  • 二级引证文献(6)
2016(10)
  • 引证文献(3)
  • 二级引证文献(7)
2017(11)
  • 引证文献(0)
  • 二级引证文献(11)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
手背静脉图像
特征提取
稀疏表示
身份识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
仪器仪表学报
月刊
0254-3087
11-2179/TH
大16开
北京市东城区北河沿大街79号
2-369
1980
chi
出版文献量(篇)
12507
总下载数(次)
27
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导