基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为有效解决支持向量回归中的参数选择问题,提出了一种新算法——AGA-SVR.在该算法中,通过适时增加染色体变异的概率来提高染色体的多样性,克服了标准遗传算法存在个体容易早熟的缺陷,从而增加学习到全局最优的几率.通过将AGA-SVR应用于上证开盘指数预测,结果验证了该算法优于标准遗传算法及经典梯度下降算法.
推荐文章
改进的FS算法选取支持向量回归机参数及应用
智能交通系统
自由搜索算法
支持向量回归机
参数优化
交通流预测
阵列波束优化的标准支持向量回归
支持向量机
标准支持向量回归
波束形成
阵列信号处理
阵列波束优化
基于标准支持向量回归的阵列波束优化研究
支持向量机
标准支持向量回归
波束形成
阵列信号处理
优化
基于支持向量回归的设备故障趋势预测
支持向量回归
BP神经网络
灰色模型
灰色-AR模型
故障趋势预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 支持向量回归参数调节及应用研究
来源期刊 计算机工程与设计 学科 工学
关键词 遗传算法 支持向量机 核函数 上证指数 参数选择
年,卷(期) 2011,(8) 所属期刊栏目 智能技术
研究方向 页码范围 2821-2824
页数 分类号 TP391.4
字数 3453字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张化祥 山东师范大学信息科学与工程学院 73 576 14.0 19.0
5 王至超 山东师范大学信息科学与工程学院 3 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (8)
同被引文献  (6)
二级引证文献  (9)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(5)
  • 引证文献(4)
  • 二级引证文献(1)
2015(6)
  • 引证文献(0)
  • 二级引证文献(6)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遗传算法
支持向量机
核函数
上证指数
参数选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导