基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Item response theory (IRT) is a modern test theory that has been used in various aspects of educational and psychological measurement. The fully Bayesian approach shows promise for estimating IRT models. Given that it is computation- ally expensive, the procedure is limited in practical applications. It is hence important to seek ways to reduce the execution time. A suitable solution is the use of high performance computing. This study focuses on the fully Bayesian algorithm for a conventional IRT model so that it can be implemented on a high performance parallel machine. Empirical results suggest that this parallel version of the algorithm achieves a considerable speedup and thus reduces the execution time considerably.
推荐文章
Lyocell与Model织物风格比较
再生纤维素纤维
Lyocell织物
Model织物
风格特征
自适应用户的Item-based协同过滤推荐算法
推荐系统
协同过滤
Item-based
自适应用户
条目相似性
信息过载
智能信息处理的Bayesian方法研究进展
Bayesian统计学
混合智能系统
混合体模型
神经网络
计算机视觉
Zircon saturation model in silicate melts: a review and update
Zircon
Zircon saturation
Model
Silicate melt
Mafic to silicic melts
Peraluminous to peralkaline compositions
Igneous rocks
Thermometer
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Parallel Computing with a Bayesian Item Response Model
来源期刊 美国计算数学期刊(英文) 学科 工学
关键词 Gibbs Sampling High Performance Computing Message PASSING Interface TWO-PARAMETER IRT Model
年,卷(期) 2012,(2) 所属期刊栏目
研究方向 页码范围 65-71
页数 7页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Gibbs
Sampling
High
Performance
Computing
Message
PASSING
Interface
TWO-PARAMETER
IRT
Model
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导