基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
用文本分类的方法找出中文评教信息的情感倾向,使学生主观评价里蕴含的信息得到有效利用,是对现有评教系统的必要补充.采用基于潜在语义分析的方法对文本向量降维,并用支持向量机的分类方法对目标文本进行分类,得到每一条主观评价的情感倾向.分析了特征选择、特征抽取方法、降维维数、词性、训练集合与测试集合样本的比例等几方面对分类的影响,找到了较好的中文评教文本分类模型.
推荐文章
中文文本分类研究
文本分类
k 近邻
支持向量机
最大熵
中文文本分类系统的设计与实现
文本分类
向量空间模型
特征项选择
权重
不同情境下中文文本分类模型的表现及选择?
中文文本
文本分类
数据挖掘
情报分析
基于深度神经网络的中文新闻文本分类方法
深度神经网络
文本分类
中文新闻
自然语言处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 中文评教文本分类模型的研究
来源期刊 烟台大学学报(自然科学与工程版) 学科 工学
关键词 中文文本分类 支持向量机 潜在语义分析
年,卷(期) 2012,(2) 所属期刊栏目
研究方向 页码范围 122-126
页数 分类号 TP181
字数 4865字 语种 中文
DOI 10.3969/j.issn.1004-8820.2012.02.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王立宏 烟台大学计算机科学与技术学院 51 270 8.0 14.0
2 谭征 烟台大学计算机科学与技术学院 15 62 4.0 7.0
3 孙红霞 烟台大学计算机科学与技术学院 8 41 4.0 6.0
4 潘庆先 烟台大学计算机科学与技术学院 16 95 7.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (184)
参考文献  (8)
节点文献
引证文献  (4)
同被引文献  (28)
二级引证文献  (12)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(7)
  • 参考文献(4)
  • 二级参考文献(3)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(7)
  • 引证文献(1)
  • 二级引证文献(6)
研究主题发展历程
节点文献
中文文本分类
支持向量机
潜在语义分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
烟台大学学报(自然科学与工程版)
季刊
1004-8820
37-1213/N
16开
山东省烟台市莱山区
1988
chi
出版文献量(篇)
1409
总下载数(次)
0
总被引数(次)
5478
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导