针对现有单类分类器对目标数据先验信息考虑的不足,在结构单类支持向量机(structure done—class support vector machine,SOCSVM)中嵌入局部密度信息,提出局部密度嵌入的结构单类支持向量机(SOCSVM with local density embedding ldSOCSVM)。借助K近邻(K-nearest neighbor,KNN)揭示目标数据局部密度,并进一步诱导出权重因子作用于样本点。该算法充分利用目标数据的全局信息及局部密度信息,从而提高分类器的泛化能力。UCI数据集上的实验结果验证了ldSOCSVM的有效性。