基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
与采用信息增益值来为样本属性加权的方法相比,本文提出了一种维权重支持向量机方法,该方法采用遗传算法为样本属性加权同时优化支持向量机及其核函数的参数,形成基于遗传算法的维权重支持向量机方法.在UCI数据集上的多个对比性实验表明本文方法可以进一步提高分类器的学习和泛化性能.
推荐文章
基于加速遗传算法的选择性支持向量机集成
加速遗传算法
适应函数
负相关学习
支持向量机
选择性集成
基于遗传算法和支持向量机的故障诊断方法
最小二乘支持向量机
自适应遗传算法
机载电气盒
故障诊断
基于遗传算法的双子支持向量机的模型选择
双子支持向量机
遗传算法
核函数
参数选择
遗传算法优化支持向量机的网络流量混沌预测
遗传算法优化
支持向量机
网络流量
混沌预测
相空间重构
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法的维权重支持向量机研究
来源期刊 河北工业大学学报 学科 工学
关键词 遗传算法 支持向量机 维权重 信息增益
年,卷(期) 2012,(5) 所属期刊栏目
研究方向 页码范围 103-106
页数 4页 分类号 TP391.4
字数 3428字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李艳 河北工业大学经济管理学院 19 365 6.0 19.0
2 郭磊 河北工业大学电气与自动化学院 14 93 5.0 9.0
3 辛长平 河北工业大学计算机科学与软件学院 1 1 1.0 1.0
4 武建亮 河北工业大学计算机科学与软件学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (1811)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (6)
二级引证文献  (0)
1909(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(7)
  • 参考文献(0)
  • 二级参考文献(7)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遗传算法
支持向量机
维权重
信息增益
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北工业大学学报
双月刊
1007-2373
13-1208/T
大16开
天津市北辰区双口镇西平道5340号
1917
chi
出版文献量(篇)
3202
总下载数(次)
10
总被引数(次)
21785
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
河北省自然科学基金
英文译名:
官方网址:
项目类型:
学科类型:
论文1v1指导