基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机SVM(support vector machine)方法的合理参数选择对提高回归结果的准确性有重要作用.该文采用基于支持向量机短期负荷预测的参数选择方法,用遗传算法对参数种群进行编码、交叉、复制和变异,求得最优参数和最优核函数.将该算法应用于电力系统短期负荷预测中,应用了筛选和不筛选特征值两种方案对历史数据进行了预测.算例证明,无论是应用筛选特征值方案还是不筛选特征值方案,参数选择对预测精度提高都具有重要作用.
推荐文章
基于支持向量机的短期负荷预测
电力系统负荷
短期预测
支持向量机
网格法
野草算法和支持向量机相融合的短期负荷预测
电力系统
短期负荷
野草算法
相空间重构
基于相似日的支持向量机短期负荷预测
负荷预测
最小二乘支持向量机
细菌趋化
相似日
日期距离
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 短期负荷预测的支持向量机参数选择方法
来源期刊 电力系统及其自动化学报 学科 工学
关键词 支持向量机 参数选择 核函数选择 负荷预测 遗传算法
年,卷(期) 2012,(6) 所属期刊栏目 学术论文
研究方向 页码范围 148-151
页数 4页 分类号 TM61
字数 3095字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 程浩忠 上海交通大学电气工程系 323 10481 55.0 85.0
2 杨镜非 上海交通大学电气工程系 37 619 10.0 24.0
3 童开蒙 上海交通大学电气工程系 3 30 2.0 3.0
4 杨国健 上海交通大学电气工程系 1 25 1.0 1.0
8 孙毅斌 1 25 1.0 1.0
9 叶清 1 25 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (194)
参考文献  (6)
节点文献
引证文献  (25)
同被引文献  (107)
二级引证文献  (49)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(4)
  • 参考文献(0)
  • 二级参考文献(4)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(4)
  • 参考文献(2)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(6)
  • 引证文献(5)
  • 二级引证文献(1)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(12)
  • 引证文献(8)
  • 二级引证文献(4)
2017(16)
  • 引证文献(5)
  • 二级引证文献(11)
2018(15)
  • 引证文献(3)
  • 二级引证文献(12)
2019(16)
  • 引证文献(1)
  • 二级引证文献(15)
2020(7)
  • 引证文献(1)
  • 二级引证文献(6)
研究主题发展历程
节点文献
支持向量机
参数选择
核函数选择
负荷预测
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力系统及其自动化学报
月刊
1003-8930
12-1251/TM
大16开
天津市南开区天津大学电气与自动化工程学院
1989
chi
出版文献量(篇)
3958
总下载数(次)
6
总被引数(次)
53050
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导